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Surface Tension Prediction Using Characteristics
of the Density Profile Through the Interfacial Region
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A simple surface tension estimation technique is described that is based
solely upon the characteristics of the density profile in the interfacial region
and the physical properties of the molecules in the fluid. This method,
denoted free energy integration (FEI), links interfacial tension to known
interfacial region density profile characteristics obtained via experiment or
simulation. The general FEI methodology is provided here, and specific rela-
tions are derived for a methodology that incorporates the Redlich–Kwong
fluid model. The Redlich–Kwong based FEI method was used to pre-
dict interfacial tension using the density profile characteristics of molecular
dynamics (MD) simulations of argon using the Lennard–Jones potential, dia-
tomic nitrogen using the two-center Lennard–Jones potential, and water using
the extended simple point-charge (SPC/E) model. These results for argon
compare favorably to values calculated by the traditional virial approach,
known values from the literature using the finite-size scaling technique, and
ASHRAE recommended values. In addition, the FEI predictions agree well
with ASHRAE values and predictions using the virial method for nitrogen
for the simulated range of temperatures in this study, and for water for
reduced temperatures above 0.7. In addition, the FEI method results agree
well with other established theoretical techniques for predictions of the sur-
face tension of sulfur hexafluoride close to the critical point.

KEY WORDS: interfacial region; molecular dynamics; Redlich–Kwong; surface
tension.

1. INTRODUCTION

Surface tension is an important macroscopic thermophysical property of
fluids that affects behavior in a variety of processes such as boiling heat
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transfer [1], condensation [2], and microscale channel flow [3]. Two widely-
used traditional means of deriving surface tension using computer simu-
lations have previously been developed. The first method uses molecular
dynamics (MD) simulations to determine the pressure tensor variation
through the interfacial region [4], and the difference between the normal and
tangential components of the pressure tensor across the interfacial region is
integrated to attain the surface tension, γ ,

γ =
∫ z=+∞

z=−∞
[Pn (z)−Pt (z)]dz (1)

This approach is valid, since the interfacial tension comprises the only
source of anisotropy in the pressure tensor. This method, commonly
known as the virial method (or virial expression), has been used exten-
sively to estimate surface tension values for argon (e.g., Weng et al. [5]),
diatomic fluids (e.g., Enders et al. [6]), hydrocarbons (e.g., Harris [7]), and
water (e.g., Alejandre et al. [8]). Nijmeijer et al. [9], Dunikov et al. [10],
Holcomb et al. [11], and Mecke et al. [12] found that the intermolecular
potential truncation method and distance impact the accuracy in calculat-
ing the surface tension using the virial method. Therefore, Barker [13] and
Sinha et al. [14] added long-range corrective terms in the surface tension
calculation to yield predictions of surface tension for argon in good agree-
ment with ASHRAE recommended values [15].

Finite-size scaling [16–19] provides an attractive alternative method to
surface tension prediction using a grand canonical Monte Carlo simula-
tion, for the cutoff and domain size dependencies are incorporated into
the model. In this method, the interfacial region is not simulated. Instead,
the difference between the probability of observing bulk liquid and vapor
states (Pmax) and the minimally probable intermediate state (Pmin) is used
as a measure of the excess free energy due to the presence of the interfa-
cial region for a known domain characteristic dimension. Comparison of
several simulated excess free energy values at various domain sizes allows
for extrapolation to the interfacial tension value corresponding to an infi-
nite domain. This approach has the advantage over the virial approach
since it has been established that the size of the domain has an effect on
the interfacial region profile [20]. Nonetheless, Errington has shown that
both methods provide good agreement under proper simulation conditions
[17].

Various theoretical approaches are also available for estimation of
surface tension. Brock and Bird [21] used a corresponding states method
to estimate the surface tension variation with reduced temperature.
Similarly, Carey [22] used a neoclassical theory of capillarity to estimate
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this variation. In addition, Carey and Wemhoff [23] developed a closed-
form solution using a Redlich–Kwong fluid model to estimate surface ten-
sion from a knowledge of the interfacial region thickness. Finally, in this
paper we describe the free energy integration (FEI) method as a simpli-
fied variation of density functional theory [24] to compute the system net
excess free energy by performing a numerical integration of the local free
energy density. It is the goal of this study to evaluate the effectiveness
of the Redlich–Kwong-based FEI method by comparing estimated values
using this method to those using the aforementioned methods.

2. GENERAL FORM OF THE FREE ENERGY INTEGRATION
TECHNIQUE

The underlying theory for the FEI model is that the free energy per
unit surface area for the liquid–vapor interfacial region is higher than the
extension of the values of the two bulk phases to the center of the inter-
facial region. The difference in the free energy values of these two systems
is the interfacial tension, which is written mathematically as

γ =
∫ 0

z=−∞
(ψ(z)−ψl) dz−

∫ +∞

z=0
(ψv −ψ(z)) dz (2)

where ψ(z) is the Helmholtz free energy density at a given position z in
the interfacial region, and ψl and ψv are the bulk values of the free energy
density in the liquid and vapor interfacial regions, respectively. Note that
in Eq. (2) ψv>ψl, and the center of the interfacial region is set at z= 0,
which is defined by

∫ 0

z=−∞
(ρl −ρ (z)) dz=

∫ +∞

z=0
(ρ (z)−ρv) dz (3)

Evaluation of Eq. (2) requires calculation of the free energy density for all
z in the interfacial region. Generally, the free energy density may be writ-
ten as the summation of two terms,

ψ(z)=ψ0 [ρ (z) , T ]+ψ1
[
ρ′′ (z) , T

]
(4)

where T is the local temperature, and ρ and ρ′′ are the molecular num-
ber density and second derivative of the number density of the system at
a location z. If local thermodynamic equilibrium is assumed, then the tem-
perature is constant through the interfacial region. The local density is
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approximated using the hyperbolic tangent profile imposed by the van der
Waals theory of capillarity [25],

ρ (z)= 1
2
(ρl +ρv)+ 1

2
(ρl −ρv) tanh

(
2z
δzi

)
(5)

where ρl and ρv are the liquid and vapor densities, respectively, and δzi is
the thickness of the interfacial region;

δzi = ρl −ρv

dρ
dz

∣∣∣
z=0

(6)

The center of the interfacial region in Eq. (5) is set at z=0, and the sym-
metry of Eq. (5) coupled with the z= 0 definition of Eq. (3) allows for
the approximation of the center of the interfacial region occurring at ρm,
where

ρm = ρl +ρv

2
(7)

Although the profile of Eq. (5) is used here, it should be noted that other
expressions for the density profile have been developed (e.g., Fisk and
Widom [26], Buff et al. [27], Robert and Stuart [28], and Robert [29]).
However, the FEI analysis has been found to be independent of the spe-
cific density profile used [30]. If the density profile is assumed to follow
the proposed fit curve relation of Eq. (5), then the second derivative of the
density profile is

ρ′′ (z)= 4

δz2
i

(ρl −ρv) sech2
(

2z
δzi

)
tanh

(
2z
δzi

)
(8)

Evaluation of the local free energy density in Eq. (4) requires use of a
prescribed fluid model that reasonably approximates the correct thermo-
dynamic relations under metastable superheated liquid and supersaturated
vapor fluid conditions. Although molecular models provide the most accu-
racy in estimating the free energy density, a general fluid model is advanta-
geous in that it provides reasonable estimations to thermodynamic property
values for a wide range of fluids. Several examples of these fluid models are
known: van der Waals, Redlich–Kwong, Soave, and Peng–Robinson. Once
the partition function Q of the fluid model is known, then the local free
energy density can be calculated using the relation,

ψ= F

V
=−kBT

V
lnQ (9)

Note that the partition function Q must include a curvature term allowing
for the calculation of ψ1 in Eq. (4).
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–

Fig. 1. Flowchart for general implementation of the FEI method.

Figure 1 shows the algorithm for performing the FEI technique. The
user provides a fluid model and values of the fluid critical properties. In
addition, the user supplies values of ρl, ρv, δzi , and T , which may be
acquired by either an MD simulation or an experiment. In the analysis, a
domain is set up with a width that is five times the interfacial region thick-
ness. This domain is divided into 10,000 bins of thickness �z, and the
local reduced molecular density is approximated in each bin using the den-
sity profile given by Eq. (5), where the value of z used in the calculation is
located at the center of the bin. The local free energy density is calculated
using Eq. (9). The bulk liquid and vapor free energy densities are approx-
imated as those for the furthest negative and positive bins, respectively.
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Then, the integration of Eq. (2) is performed numerically using basic block
integration schemes.

3. FREE ENERGY INTEGRATION TECHNIQUE USING
THE REDLICH–KWONG FLUID MODEL

The appendix provides the free energy density relation specific to the
Redlich–Kwong fluid model. The Redlich–Kwong fluid model was utilized
in this study, since it is generally more accurate than the van der Waals
model in matching saturation data for a variety of fluids. The resultant
expression for the local free energy density is

ψ = −ρkBT

{
3
2

ln

[
(1−ρbR)

2/3

ρ2/3�2

]
+F1

}
− aR0ln (1+ρbR)

bRT 1/2

×
[
ρ+L2

i 0.08065 (1−Tr)
−0.34 ρ′′

]
(10)

where

�=
[

h2

2πMkBT

]1/2

(11)

and

F1 =1+ ξ −5
2

lnπ − lnσs +
(
ξ −3

2

)
ln
(

T

θrot,m

)
(12)

where M is the molecular mass, aR0 and bR are the Redlich–Kwong coeffi-
cients, kB is Boltzmann’s constant, h is Planck’s constant, ξ is the number
of degrees of freedom of the molecule, σs is the symmetry number, θrot,m
is the rotational temperature of mode m, and

Li =
(
kBTc

Pc

)1/3

(13)

In Eq. (10), F1 and � are the only variables that depend on the physical
characteristics of the molecules in the system. Table I lists the values of ξ ,
σs, and θrot,m for argon, nitrogen, and water, while Table II provides the
values of F1 for these fluids.

Equations (2), (5), (8), and (10) may be expressed in reduced form
using the system critical parameters and the reduced properties:

ζ = z/Li (14a)
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Table I. Individual Geometric Factors for Each Fluid Type

Values

Parameter Description Argon Nitrogen Water

ξ Molecular degrees of freedom 3 5 6
σs Symmetry number 1 2 1
θrot,m Rotational temperature (K) N/A 2.88 13.4, 20.9, 40.1

Table II. Values of the Factor F1 for Each Fluid Type

Fluid F1

Argon 1−2 lnπ

Nitrogen 1− ln (2)+ ln
(
T
/
2.88

)

Water 1+ lnπ +1.5 ln
(
T
/
13.4

)
ln
(
T
/
20.9

)
ln
(
T
/
40.1

)

δζi = δzi/Li (14b)

br =bRNA/v̂c =0.25992 (14c)

ar =aR0N
2
A/(PcT

1/2
c v̂2

c )=3.84732 (14d)

ar,1 =aR0,1N
2
A/

(
PcT

1/2
c v̂2

cL
2
i

)
=0.310286 (1−Tr)

−0.34 (14e)

Pr =P/Pc (14f)

Tr =T/Tc (14g)

ρr = ρ̂/ρ̂c (14h)

vr = v̂/v̂c (14i)

γr = γ

PcLi
(14j)
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ψr = ψ

Pc
(14k)

�r =ρ1/3
c �=ρ1/3

c

[
h2

2πMkBT

]1/2

(14l)

where Eqs. (14c) and (14d) use the compressibility of the Redlich–Kwong
fluid at the critical point:

ρckBTc

Pc
=3 (15)

The resultant reduced form of Eqs. (2), (5), (8), and (10) are

ψr =−3ρrTr

{
ln
[

1−ρrbr

�3
rρr

]
+F1

}
− ln (1+ρrbr)

brT
1/2
r

[
arρr +ar,1

d2ρr

dζ 2

]

(16)

γr =
∫ 0

ζ=−∞

(
ψr (ζ )−ψr,l

)
dζ −

∫ +∞

ζ=0

(
ψr,v −ψr (ζ )

)
dζ (17)

ρr(ζ )= 1
2

(
ρr,l +ρr,v

)− 1
2

(
ρr,l −ρr,v

)
tanh

(
2ζ
δζi

)
(18)

ρ′′
r (ζ )=

4

δζ 2
i

(
ρl,r −ρv,r

)
sech2

(
2ζ
δζi

)
tanh

(
2ζ
δζi

)
(19)

Note that in Eqs. (16) through (19), the only unknown variables are the
temperature, interfacial region thickness, bulk densities, and F1. Further-
more, F1 is known from Table II.

4. FEI SURFACE TENSION ESTIMATION COMPARED
TO COMPUTATIONAL APPROACHES

In order to use the FEI method, values of the interfacial region thick-
ness must be known. One means to obtain this thickness value is via
MD simulations. In this study, MD simulations of argon, nitrogen, and
water were run for a variety of system temperatures between Tr =0.60 and
Tr = 0.85. In the argon simulations, liquid molecules were initialized in a
6 × 6 × 9 face-centered-cubic (fcc) lattice structure in the center of the
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domain to create two interfaces. The lattice density matched the expected
bulk liquid density from ASHRAE tables [15]. Vapor molecules were also
placed in a fcc lattice structure, provided the lattice parameter was suffi-
ciently small to fit in the simulation domain. The liquid region comprised
approximately one-third of the simulation domain.

For argon, the molecular velocities were initialized corresponding to
a low initial temperature (Tr =0.1) following the methodology of Box and
Mueller [31]. The configurations were updated each time step of 5 fs using
the velocity Verlet algorithm [32]. The temperature of the system was then
slowly raised to the desired equilibrium temperature via velocity rescal-
ing for 20,000 steps, maintained at that temperature for 10,000 steps, and
allowed to equilibrate for 10,000 steps prior to data collection. Argon
molecules interacted via the Lennard–Jones potential,

φij =4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(20)

with parameters σ = 0.34 nm and ε= 121 kB K. The intermolecular poten-
tial and force between molecules i and j were smoothly truncated at the
cutoff distance of one-half of the minimum simulation domain dimen-
sion (approximately 5.0 σ ). Upon equilibration, the simulation domain
was divided into 100 bins for data collection, and the mean density values
were calculated over the final 160,000 time steps according to

〈ρ〉= 〈Nbin〉
Vbin

(21)

where 〈ρ〉 is the mean molecular density, 〈Nbin〉 is the mean number of
molecules in the bin, and Vbin is the bin volume. The authors have shown
that 100 collection bins are sufficient to provide reasonable estimates of
the interfacial region density profile position and thickness for the systems
used in this study [30]. The surface tension was also calculated using a
modified form of the virial method of Eq. (1),

γ = 1
2

∫ +∞

−∞
(Pn −Pt) dz (22)

where the factor of 1/2 stems from the presence of two interfaces in the
simulation domain. The local normal and tangential pressure components
were calculated by [33]
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Fig. 2. Equilibrium simulation domain for argon, Tr =0.74.

Pn = 1
V

N∑
i=1

Miv
2
i,z+

1
V

N∑
i=1

N∑
j>i

Fij,zzij

Pt = 1
2V

N∑
i=1

Mi

(
v2
i,x +v2

i,y

)
+ 1

2V

N∑
i=1

N∑
j>i

(
Fij,xxij +Fij,yyij

) (23)

Figure 2 provides a snapshot of the equilibrium configuration for
1296 argon molecules at a reduced temperature of 0.74. Figure 3 shows
that the mean mass density profile calculated for argon at Tr = 0.74 com-
pares well to the fit curve relation of Eq. (5). The application of the fit
curve for a particular density profile may be performed by taking the gra-
dient of the density using the two bins straddling the mean density value
of the system using Eq. (7) and plugging this value into Eq. (6) to obtain
the interfacial region thickness. The fit curve relation may alternately be
found by manually iterating the value of the interfacial region thickness
until it closely matches the bin data. The fit curve relation also matches
data for the nitrogen and water systems with the same accuracy as that
for argon. It should be noted that the simulated bulk density values were
used in the FEI model, and the simulated bulk liquid density values gen-
erally deviated from ASHRAE data with an error less than 3%.

The nitrogen and water molecules followed the same initialization pro-
cedure as the argon molecules with some exceptions. The fcc liquid lattice
was 6×6×6 cells for nitrogen and 6×5×5 cells for water. The translational
velocities of the molecules were initialized in the same manner as for the
argon system, but an initial angular velocity distribution was also applied
that matched the Boltzmann rotational energy distribution function [34];

f (εrot) dεrot = 2
√
εrot√

π (kBT )
3/2
e−εrot/kBT dεrot (24)
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Fig. 3. Mean mass density profile for argon, Tr =0.74.

where f (εrot) dεrot is the number of molecules with rotational energies
between εrot and εrot + dεrot. The nitrogen system was equilibrated via
velocity rescaling for 20,000 steps, and allowed to settle for an additional
20,000 steps, while these values were 15,000 steps and 5000 steps for water.
For the polyatomic simulations, the molecular configuration was updated
every time step using the RATTLE [35] algorithm, and the time step used
was 1 fs.

The nitrogen molecules interacted via the two-centered Lennard–Jones
potential function, where each nitrogen atom interacted with all atoms on
other molecules with the potential given by the Lennard–Jones interac-
tion of Eq. (20), where σ =0.33078 nm and ε=36.673 kB K, and the nitro-
gen–nitrogen bond length is fixed at 0.1089 nm [36]. The potential and
force interactions of these Lennard–Jones interatomic interactions were
smoothly truncated at approximately 5.0 σ . The water molecules interacted
via the SPC/E potential [37],

φij =4ε

[(
σ

rOO

)12

−
(
σ

rOO

)6
]

+ 1
4πε0

3∑
a=1

3∑
b=1

qaqb

riabj
(25)

where rOO is the oxygen–oxygen separation distance, ε0 is the permit-
tivity of a free vacuum, riabj is the radial distance between atom a of
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molecule i and atom b of molecule j , and qa and qb are the values of
the point charges on atoms a and b, respectively. In the SPC/E potential,
the OH bond length is 0.100 nm, the HOH bond angle is 109.47◦, and
the oxygen atoms contain Lennard–Jones parameters σ and ε with values
of 0.3166 nm and 78.21 kB K, respectively. The oxygen and hydrogen point
charges qO and qH are −0.8476e and +0.4238e, respectively. The Coulom-
bic interactions were truncated via the Ewald summation technique, where
formulae are provided by Heyes [38] and Alejandre et al. [8],

U = 1
4πε0




2π
V

∑
k �=0

Q(k) |S (k)|2 +
N∑
i=1

Natom∑
a=1

N∑
j>i

Natom∑
b=1

qiaqjb
riajb

erfc
(
κriajb

)

− κ√
π

N∑
i=1

Natom∑
a=1

q2
ia − 1

2

N∑
i=1

Natom∑
a=1

qiaqjb
riaib

erf (κriaib)




(26)

where

S (k)=
N∑
i=1

Natom∑
a=1

qia exp (ik • ria) (27)

and

Q(k)= 1
k2

exp

(
− k2

4κ2

)
(28)

The vector k is the reciprocal lattice vector and is denoted as

k = 2πnx
Lx

x̂ + 2πny
Ly

ŷ + 2πnz
Lz

ẑ (29)

where n is the number of lattice points in a given direction, L is the
dimension of the simulation domain, and x̂, ŷ, and ẑ are Cartesian unit
vectors. The value of κ was 5.6/Lx = 5.6/Ly , and the Fourier cutoff was
5 lattice points in the x- and y-directions and 15 in the z-direction to
account for Lz∼ (3Lx =3Ly). The Lennard–Jones interatomic interactions
were truncated using a standard minimum image convention.

During the data collection phase of the simulations (between 60,000
and 105,000 steps), the mean density profile was collected based on
Eq. (21), where the center of mass was used in designating the slab
in which the molecule was situated. The virial method for surfaceten-
sion determination using polyatomic molecules followed Eq. (22), but the
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expressions for the normal and tangential pressure components are slightly
different [39],

Pn = 1
V

N∑
i=1

Miv
2
com,iz+

1
V

N∑
i=1

N∑
j>i

2∑
a=1

2∑
b=1

Fiajbzziabj

Pt = 1
2V

N∑
i=1

Mi

(
v2

com,ix+v2
m,iy

)

+ 1
2V

N∑
i=1

N∑
j>i

2∑
a=1

2∑
b=1

(
Fiajbxxiabj +Fiajbyyiabj

)
(30)

where the net interaction between molecules i and j is the sum of the
interatomic interactions and is approximated to be applied on the center
of mass of those molecules. For water, the computation used Ewald sum-
mation, and the contribution of the electrostatic potentials to the x-direc-
tional pressure component follows [8, 38]:

PxV = 1
8πε0

N∑
i=1

Natom∑
a=1

qia

N∑
j �=i

Natom∑
b=1

qjb

[
2√
π
κriajbexp

(
−κ2r2

iajb

)

+erfc
(
κriajb

)] xijxiajb
r3
iajb

+ 1
4πε0

2π
V

∑
k �=0

Q(k)|S(k)|2
(

1− 2k2
x

k2
− k2

x

2κ2

)

−
N∑
i=1

Natom∑
a=1

(ria−ri )
(

FKia
)
x

(31)

where xij is the x-vector from the center of mass of molecule i to mole-
cule j , xiajb is the x-vector from atom a of molecule i to atom b of mole-
cule j , ri and ria are the position vectors of the center of mass of molecule
i and atom a of molecule i, respectively, and FK

ia is the Fourier component
of the electrostatic force on atom a of molecule i,

FK
ia =− qia

4πε0

4π
V

∑
k �=0

Q(k)k Im {exp (−k • ria) S (k)} (32)

The real component of the electrostatic force on atom a of molecule i is

FR
ia = qia

4πε0

N∑
j �=i

Natom∑
b=1

qjb

[
2√
π
κriajb exp

(
−κ2r2

iajb

)
+ erfc

(
κriajb

)] riajb
r3
iajb

(33)
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The total electrostatic force on molecule i of atom a is the summation
of the forces in Eqs. (32) and (33). Extension of Eq. (31) to the y- and
z-directions is trivial. The normal component of pressure is then equal
to the z-component, and the tangential component is the average of the
x- and y-components. The system average temperature was determined
from the average molecular velocities by

〈T 〉= 1
ξNkB

〈
N∑
i=1

Natom∑
a=1

miav
2
ia

〉
(34)

where mia is the mass of atom a of molecule i and ξ is the number of
degrees of freedom within each molecule. The values of ξ for argon, nitro-
gen, and water are 3, 5, and 6, respectively.

Figures 4, 5, and 6 provide results from FEI and virial analyses for
argon, nitrogen, and water, respectively. In all cases, the critical parameters

0.1
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0.01 0.1 1

1-Tr

g r

Weng et al. [5]

Sinha etal. [14]

Potoff and Panagiotopoulos [18]

This study

ASHRAE recommended values [15]

Fig. 4. Predicted surface-tension values for argon as a function of temperature using var-
ious methods. Closed black symbols represent virial method results, closed gray symbols
represent finite-size method results, and open symbols represent FEI method results.



Surface Tension Prediction Using Density Profile in Interfacial Region 427

0.1

1

10

0.01 0.1 1

1-Tr

Virial method

FEI method

ASHRAE recommended values [15]

g r

Fig. 5. Predicted surface-tension values for nitrogen as a function of temperature using
the FEI and virial methods.

used in the FEI analysis were based on ASHRAE data [15], since the
parameters of the intermolecular potential were chosen to model the fluid
as accurately as possible for the temperature ranges given. For argon,
various values of surface tension computed by the finite-size and virial
methods were also taken from the literature for comparison, and the
aforementioned values of the Lennard–Jones parameters were used to scale
the simulation results into reduced units for comparison. In addition,
the Redlich–Kwong-based FEI method was used to estimate surface ten-
sion where density profile characteristics were available. For argon, three
sources were used: Wu and Pan [40], Weng et al. [5], and Sinha et al. [14].
Wu and Pan do not provide their own calculation of surface tension, but
they do provide the value of the interfacial region thickness for a system
at 110 K. The Weng et al. study provides its calculated value of surface
tension via the virial method, while the Sinha study provides a plot of sur-
face tension versus temperature using their modified version of the virial
method. The results accredited to Sinha et al. [14] in Fig. 4 are an estima-
tion of the surface tension values read from their plot. For all three stud-
ies, the values of bulk liquid and vapor densities were approximated from
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Fig. 6. Predicted surface-tension values for water as a function of temperature using the
FEI and virial methods. Closed symbols represent virial method predictions, and open
symbols represent FEI method predictions.

the provided plots of the density profile through the interfacial region.
In the Weng et al. and Sinha et al. studies, the values of the interfacial
region thickness used in the post-simulation analyses were approximated
from density profile plots provided by these studies by tracing a line tan-
gent to the density profile at ρ = ρm. The results show that all methods
exhibit the correct trends with the ASHRAE data, and the FEI method
predicts values approximately 25% greater than the ASHRAE data and
10% less than the finite-size scaling data.

The nitrogen results, plotted in Fig. 5, show that both the virial and
FEI methods agree with the ASHRAE results within 7.5%. For water, the
FEI method was applied to the MD simulations of this study and the
results of SPC/E water simulations provided by Alejandre et al. [8]. Their
study provided values of the interfacial region thickness, the bulk densities,
and the calculated surface tension by the virial method as a function of
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temperature. The predicted values of surface tension by the FEI method
are nearly identical using simulation data provided by this study or by
Alejandre et al. [8]. The agreement between the FEI method results and
the ASHRAE data increases with temperature, and thus works best for
reduced temperatures higher than 0.7. It should be noted that the surface-
tension values derived for SPC/E water via the virial method in Fig. 6 did
not compare as well to the ASHRAE recommended values as those gen-
erated by Alejandre et al. [8].

For water, the FEI predictions were 50% higher than the ASHRAE rec-
ommended values for low temperatures, but the deviation was less than 30%
for Tr>0.7. Carey’s [22] investigation suggested that predicting surface ten-
sion by determining the net excess free energy per unit area using a Redlich–
Kwong fluid model should contain an error of approximately 30% from the
ASHRAE recommended values. Furthermore, Binder and Muller [20] have
suggested that the predicted density profiles for water systems are strongly
influenced by domain size and disagree with experiments [41], so caution
should be exercised when applying the FEI method to interfaces contain-
ing polar molecules. Nevertheless, the results shown in Fig. 6 suggest that
the water surface tension predictions using the FEI method provide good
agreement with ASHRAE data for reduced temperatures above 0.7.

5. APPLICATION TO EXPERIMENTALLY DETERMINED VALUES
OF THICKNESS

The FEI method can be used to compute the interfacial tension if val-
ues of the interfacial region thickness are available. In some instances, this
can provide a useful means of predicting the interfacial tension for condi-
tions under which it is difficult to measure directly. An example is deter-
mination of the interfacial tension at temperatures approaching the critical
point using experimentally measured interfacial region thickness data.

In order to use the FEI method, values of the bulk densities must be
approximated. Asymptotic analysis of the Redlich–Kwong model predicts
that the difference between the saturated liquid and vapor densities is [23]

ρl −ρv

ρc
=5.15 (1−Tr)

0.5 (35)

Equation (35) can be rearranged into the form
(
ρr,l −1

)+ (
1−ρr,v

)=5.15 (1−Tr)
0.5 (36)

Carey [22] provides 6 reduced saturated liquid and vapor density values
for a Redlich–Kwong fluid with Tr ≥ 0.9. Fit curves to these data exhibit
the tendencies,



430 Wemhoff and Carey

Table III. Calculated Surface Tension Values for Sulfur
Hexafluoride Using Density Values from Eqs. (32a) and

(32b) and Interfacial Region Thickness Values from
Beysens and Robert [42]

1−Tr δζi ρr,l ρr,v γr =γ / (PcLi)

0.0010 71.2 1.107 0.941 0.0010
0.0013 66.4 1.119 0.935 0.0014
0.0015 56.9 1.131 0.928 0.0019
0.0019 47.0 1.147 0.919 0.0028
0.0025 37.5 1.169 0.908 0.0042
0.0030 37.0 1.183 0.900 0.0053
0.0035 28.9 1.199 0.891 0.0068
0.0040 27.5 1.213 0.883 0.0081
0.0044 33.2 1.224 0.877 0.0093
0.0048 29.4 1.233 0.872 0.0104
0.0055 28.9 1.250 0.863 0.0127

(
ρr,l −1

)≈3.37 (1−Tr)
0.5 (37a)

(
1−ρr,v

)≈1.85 (1−Tr)
0.5 (37b)

Note that adding Eqs. (37a) and (37b) produce the relation of Eq. (36)
with an error of less than 2%.

The methodology described above was used to predict γr values for
sulfur hexafluoride very close to the critical point. Beysens and Robert
[42] used optical reflectivity measurements to determine values of interfa-
cial region thickness for sulfur hexafluoride as a function of temperature
at near-critical conditions. Equations (37a) and (37b) were used to approx-
imate the bulk liquid and vapor densities for each temperature, and the
FEI method was used to predict the surface tension from these interfacial
region values. The values of the interfacial region thickness, reduced bulk
densities, and derived surface tension are listed in Table III.

Figure 7 shows calculated values of surface tension using the FEI
method and the expected surface tension trend based on an approximated
datum. This datum applies vapor–pressure data by Verdelli et al. [43]
along with critical values recommended by Horvath [44] into relations
given by Riedel [45, 46]. The expected trend given by the figure stems from
the vanishing of surface tension as the system approaches the critical point
and the known Ising model power-law variation usually observed for pure
fluids [16] as the temperature is increased towards the critical point: γ ∼
(1−Tr)

1.26. Although the magnitude of the derived surfacetension values
are lower than the expected trend, the consistency of this observed trend
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Fig. 7. Comparison of surface-tension values found using the FEI method with the
empirically fitted trend to an approximated datum. Derived values were based on rec-
ommended interfacial thickness values from Beysens and Robert [42] and vapor pressure
data by Verdelli et al. [43]. Datum was found using methods by Riedel [45, 46] and
vapor–pressure data by Verdelli et al. [43]. Also shown are predictions by the closed-form
relation [23], and trends predicted by the neoclassical theory [22] and the corresponding-
states law [21].

with this expected variation provides some confirmation that the surface
tension values computed with this analysis are reliable predictions of this
property. Also shown are predicted values by the closed-form relation by
Carey and Wemhoff [23],

γr =1.5764

[
(1−Tr)

−0.34

T
1/2
r

]
ln
[

1+0.26ρr,l

1+0.26ρr,v

](
ρr,l −ρr,v

δζi

)
(38)

Figure 7 also shows predictions via the neoclassical theory of capillarity
[22] and the power-law variation predicted by the corresponding states law
[21]. The figure shows that the FEI predictions strongly agree with those
by the closed-form relation, and the trend exhibited by the data follow
that by the corresponding states law, the neoclassical theory, and the Ising
model. At the highest temperature, the FEI prediction disagrees with the
Ising model by approximately 50%.
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6. CONCLUDING REMARKS

The FEI method presented here provides a simple means of estimat-
ing surface tension from a knowledge of the system temperature and den-
sity profile characteristics. The strength of this method lies in the fact that
it links the interfacial tension to the thickness of the interfacial region,
and it is tunable to a wide variety of fluids. For nonpolar fluids, the results
from the Redlich–Kwong-based FEI method provide reasonable agree-
ment with ASHRAE thermodynamic data for the conditions set for our
MD simulations. This good agreement exists because nonpolar fluids are
well-approximated by the Redlich–Kwong fluid model. For water, the FEI
method provides reasonable agreement with ASHRAE recommended val-
ues for reduced temperatures greater than 0.7. The Redlich–Kwong fluid
model does not match water well for lower temperatures when the effects
of polarity are more prominent, and a more suitable fluid model may
provide better agreement.

APPENDIX: LOCAL FREE ENERGY DENSITY CALCULATION
USING THE REDLICH–KWONG FLUID MODEL

The partition function was previously developed using Rayleigh’s
model to account for the density gradient and the Redlich–Kwong model
for fluid properties [22, 23]:

lnQ = N +
(

3N
2

)
ln

[
2πMkBT (V −NbR)

2/3

N2/3h2

]
+N

[
ξ −5

2
lnπ − lnσs

]

+ξ−3
2
N ln

(
T

θrot,m

)
+ aR0N

bRkBT 3/2
ln
(
V +NbR

V

)

+ aR0κVρ
′′

2bRkBT 3/2
ln
(
V+NbR

V

)
(A1)

where M is the molecular mass, N is the number of molecules in a volume
V , ρ is the number density = N/V,aR0 and bR are the Redlich–Kwong
coefficients, kB is Boltzmann’s constant, T is temperature, h is Planck’s
constant, ξ is the number of degrees of freedom of the molecule, σs is the
symmetry number, θrot,m is the rotational temperature of mode m, and κ

is the parameter,

κ=
− 2π

3

∫ rmax

rmin

φ(r)r4dr

−2π
∫ rmax

rmin

φ(r)r2dr

(A2)



Surface Tension Prediction Using Density Profile in Interfacial Region 433

where φ(r) is the potential energy interaction between a molecule and the
surrounding fluid at a radius r. Note that the Redlich–Kwong equation of
state can be determined from Eq. (A1) for zero curvature

(
ρ′′ =0

)
by

P =kBT

(
∂lnQ
∂V

)
T ,N

= NkBT

V −bRN
− aR0N

2

T 1/2V (V +bRN)
(A3)

The Redlich–Kwong coefficients aR0 and bR may be found at the inflection
along the P–v curve of the equation of state (A3) at the critical point [47]
to yield

aR0 =0.42748
k2

BT
2.5
c

Pc
(A4)

bR =0.08664
kBTc

Pc
(A5)

The free energy density can be calculated from the partition function by

ψ= F

V
=−kBT

V
lnQ (A6)

where F is the Helmholtz free energy for a mass of fluid of volume V .
Combining Eqs. (A1) and (A6) yields

ψ =−ρkBT−
(

3ρkBT

2

)
ln

[
2πMkBT (1−ρbR)

2/3

ρ2/3h2

]
−ρkBT

[
ξ−5

2
lnπ−lnσs

]

−ρkBT

(
ξ −3

2

)
ln
(

T

θrot,m

)
− aR0ρ

bRT 1/2
ln (1+ρbR)

+ aR0κρ
′′

2bRT 1/2
ln (1+ρbR) (A7)

The value of κ is given by [22, 23]

κ=
−2π

3

∫ rmax

rmin

φ (r) r4dr

−2π
∫ rmax

rmin

φ (r) r2dr

=L2
i 0.1613 (1−Tr)

−0.34 , (A8)

Substituting Eq. (A8) into Eq. (A7) yields

ψ = −ρkBT

{
3
2

ln

[
(1−ρbR)

2/3

ρ2/3�2

]
+F1

}
− aR0ln (1+ρbR)

bRT 1/2

×
[
ρ+L2

i 0.08065 (1−Tr)
−0.34 ρ′′

]
(A9)
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where

�=
[

h2

2πMkBT

]1/2

(A10)

and

F1 =1+ ξ −5
2

lnπ − lnσs +
(
ξ −3

2

)
ln
(

T

θrot,m

)
(A11)

NOMENCLATURE

aR0 Redlich–Kwong constant for zero density gradient
bR Redlich–Kwong constant
kB Boltzmann constant
Li interfacial region characteristic length
M molecular mass
m atomic mass
N number of molecules
Natom number of atoms per molecule
NA Avogadro’s number
P pressure
q point charge value
Q partition function
R universal gas constant
T temperature
V system volume
z coordinate normal to the interface
δzi interfacial region thickness
ε Lennard–Jones energy parameter
ε0 permittivity of vacuum
γ interfacial tension
ξ number of translational plus rotational energy storage

modes
ρ number density of molecules
σ Lennard–Jones parameter
θrot,m mean rotational temperature
φij intermolecular potential
ζ nondimensional interfacial region position
εrot rotational energy
Fij intermolecular force
h Planck’s constant
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F Helmholtz free energy
ψ Helmholtz free energy density
σs symmetry number

Subscripts
bin bin volume
c critical point property
com center of mass
l saturated bulk liquid
m mean of saturated bulk liquid and vapor properties
n normal component
v saturated bulk vapor
r reduced property (normalized with critical properties)
sat saturation property
t tangential component
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